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The known solution to the spatially homogeneous nonlinear Boltzmann equa- 
tion for Maxwell models in a series of Laguerre polynomials is extended to 
include nonisotropic initial conditions. Existence proofs for a class of solutions 
are supplied. The equations for the generalized (nonisotropic Laguerre) mo- 
ments are derived in explicit form for two- and three-dimensional models. 
Further it is shown that the ordinary moments satisfy the same set of equations 
as the (Hermite) polynomial moments. 
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INTRODUCTION 

In recent years there has been a considerable revival of interest in the 
theory of the nonlinear Boltzmann equation. This equation describes the 
nonequilibrium properties of dilute monatonic gasses. See Ref. 1 and its 
references. 

One of the major results applies to the so-called Maxwell models (these 
correspond to a molecular scattering cross section proportional to I v -  
vii -1, where v and v 1 are the velocities of two colliding particles). It is the 
discovery of the general solution (2) for the spatially homogeneous case and 
isotropic initial conditions within a certain Hilbert space of functions--as 
an expansion in terms of the eigenfunctions of the corresponding linearized 
equation. The coefficients in this expansion are functions of time to be 
determined from a recursively soluble set of nonlinear moment equations. 

Proofs that for a class of initial conditions the expansion converges to 
a solution of the Boltzmann equation have been given later. (17'18) 
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In this paper we generalize this result to include nonisotropic initial 
conditions. In short, we shall (i) show that certain (nonisotropic Laguerre) 
moments can be defined, satisfying a recursively soluble set of coupled 
nonlinear equations, (ii) derive--in an easy manner-- the explicit form of 
these equations for models in two and three dimensions, and (iii) show that 
the velocity distribution function can be expanded in terms of eigenfunc- 
tions of the linearized equations, the coefficients of which are precisely the 
above-mentioned moments. We use a moment method to solve the nonlin- 
ear Boltzmann equation in combination with Fourier transformation as 
first applied by Bobylev. (5) Moment methods have been used before in the 
nonisotropic case by Ikenberry and Truesdell (4) and Grad (3) (see discus- 
sion). 

Kumar (15) has given the expansion of the collision integral in terms of 
the same basis functions as those used here for general cross section in a 
rather elegant way. The moment equations that follow from his result [his 
Eq. (100)] are a generalization of our result (ii). However, the result of the 
present paper, which deals only with Maxwell models, is much more 
explicit as it contains only Clebsch-Gordan coefficients rather than the 
more complicated and lesser known Talmi coefficients. 

In Section 1 we introduce the basic concepts. After that we shall solve 
the two-dimensional case (Section 2) and the three-dimensional case (Sec- 
tion 3) in the sense indicated above. We treat the two-dimensional case first 
for pedagogical reasons. After briefly discussing the ordinary moments and 
the related (Hermite) polynomial moments (Section 4) we conclude with a 
discussion of the result. 

1. B A S I C  C O N C E P T S  

We consider the spatially homogeneous nonlinear Boltzmann equation 
in d dimensions (d = 2, 3): (1) 

oO--ft ( v , ' ) = f d v l d ~  gl(x, g)[f(v' , t)f(vq,t)-f(v,t)f(vl,t)] (1.1) 

for the one particle velocity distribution function f(v, t). The postcollisional 
(primed) velocities are given in terms of the incoming velocities by the 
dynamics: 

1 A V t = �89  "1" V I )  "1- ~ng 
(1.2) 

v 1 = �89 + Vl) -- ~ng 

where g = v - Vl is the relative velocity of the colliding particles, g -- [gl and 
t~ a d-dimensional unit vector, parametrizing the collision. X is the scatter- 
ing angle such that cos X = t~. ~ (hats denote unit vectors throughout this 
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paper). The differential cross section I(X, g) has the following form for 
Maxwell models: (1) 

I(X, g ) =  o(cos x ) / g  (1.3) 

A special case of this is embodied by the so-called Maxwell molecules, 
molecules interacting through a repelling r 2(1-d) potential (in d-di- 
mensions), giving rise to a cross section of the above form with o(cosx) 
some well-defined though complicated functions (16) . More general models 
can be defined by choosing the function a(cosx)  conveniently. Then the 
cross section is in general not derivable from a potential. 

The special form of the cross section (1.3) yields a great simplification 
of the nonlinear Boltzmann equation. It has been noted by Bobylev (5) that 
the Fourier-transformed equation--which is in general just as difficult as 
the original equation--is much simpler for this case. The number of 
integrations in the collision term reduces from 2 d -  1 to d -  1. Some 
important symmetry propert ies--now called Bobylev symmetries(~)--can 
be simply read off in this representation. 

The Fourier transform--or characteristic function--qb(k, t) is defined 
as follows: 

dp(k, t) = (e ik.v) -re ik Vf(v, t) dv (1.4) 

[Here and in the sequel angle brackets will denote averaging with respect to 
f(v, t), as indicated]. For Maxwell models, with a cross section given by 
(1.3), it satisfies the following equation, derived by Bobylev (5) 

36p(k, t) f A A A ] A A A - -  - 

- 0 (0, 0 } 

~t 

( 1 . 5 )  

Note that only the even part ~(/~-r~) :--�89 t~)+ o ( - / ~ ,  t~)] of the cross 
section contributes to the integral. 

The small& behavior of ~(k, t) must be compatible with the conserva- 
tion laws for particle number, total momentum, and energy. By a proper 
choice of units and frame of reference we can write these as 

�9 (0, t) = (1)  = 1 

Vk6P(k, t)lk= o = i(v)  = 0 (1.6) 

t ) l k = o  = - (v2  = - d 

For isotropic initial conditions Eq. (1.5) has been discussed in extenso. 
The Laguerre series solution can be derived from it by expanding 6p(k, t) in 
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a Taylor series around k = 0. 2 Here we apply a similar method for non- 
isotropic initial conditions, first for the much simpler two-dimensional case. 
For  the physically more relevant three-dimensional case the calculations 
are more complicated, though the results of both cases are essentially the 
same. 

2. SOLUTION TO THE TWO-DIMENSIONAL MODEL 

In two dimensions the Fourier-transformed Boltzmann equation reads 

a6#(k, t) 
- cos(  - 

at 

• {r189189162 (2.1) 

with a and q, defined as the polar angles belonging to k and B, 

k = k (cosa ,  sina),  0 <<. a < 2~r 
(2.2) 

t~ = (cos % sin q~), 0 < q, < 2~r 

If the moments of the velocity distribution function exist we can expand 
the characteristic function in a series (which we assume to converge): 

oo n 

qb(k,t) = exp(-- �89 2) ~ ~, /  Cnm(t)(ik)nexp(ima) (2.3) 
n = O m = - - n  

In Appendix A it is derived that the summation is over values for which 
n + m is even [so we define Cnm ( t )  = 0 if n + m is odd and indicate this by 
the prime] and that the coefficients Cnm(t) a r e  generalized moments of the 
velocity distribution function: 

(1)(n+lml)/2(--)(n--lm[)/2 /p(Iml) t • 
Cnm(t )  = [(n + Iml)/2]! \~(n_lm[)/2~2t~ jt~ / 

(2.4) 
v -- v (cos fl, sin fi ) 

which have a very simple asymptotic (large t) form: 

Cnm( OO ) = •nOamO ( 2 . 5 )  

as follows from the fact that the velocity distribution function approaches 
the Maxwellian, the Fourier transform of which is given by ~(k, oo) 
= e x p ( -  1 2 k ). The symbol s  denotes the associated Laguerre polyno- 
mial. We shall call the above moments nonisotropic Laguerre moments. 

2 The assumption that the Taylor series exists restricts the class of solutions to a certain 
function space. However, (1.5) has also solutions outside this space. (6'7) 
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The functions 

Enm(V) = v m (j(Iml) {1,~2"~oirnl~ 
" ~(n--  r n ) / 2 ~ 2  t~ 1~ 

(2.6) 
- n <  m <  n, n + m  even 

form a complete set in the Hilbert space of functions f(v) for which 
Ilfll 2 = fdv exP( �89 v2) l f (v) l  2 is finite. They are known to be eigenfunctions of 
the Hamiltonian of the two-dimensional quantum mechanical oscillator, 
and are orthogonal in the following sense: 

[ exp(- �89 ]E.nm(v)En,m,(V)= 21ml[ (n + 'ml)/2]' 
fdv 27r [(n-lm[)/2]! 8,,,rmm, (2.7) 

If follows that the velocity distribution function can be expressed in terms 
of them: 

e x p ( -  �89 V 2 ) n 

E E t dnm(t)gnm(V) ( 2 . 8 a )  f(v, t) - 2~r 
n = 0  m =  --r/ 

with 

dnm(t) = (-  2)(n-lml)/2I n 2[ml ]!Cnm(t ) (2.8b) 

Alternatively this can be derived applying termwise Fourier inversion to 
(2.3). For isotropic initial condition it reduces to the known Laguerre series 
expansion.(1) 

From the property ~ ( - k , t ) = ~ * ( k , t )  it follows that d*n_m(t)= 
dnom(t), guaranteeing that (2.8) represents a real-valued function. 

Next we derive the equations for the nonisotropic Laguerre moments, 
that follow from (2.1) and (2.3). For convenience we denote vectors in the 
plane as complex numbers,~ i.e., we use the mapping: 

k = k(cos a, sin a) ~ ke i" (2.9a) 

and consider ~(k, t) as a function in the complex plane. It is not difficult to 
see that the vectorial arguments occuring under the integral sign in (2.1) are 
mapped as follows: 

1 ^ ~--> k cos(  )expl i  q~+ a -~ k(k + ~) ~ - ~  ~ I 

1 ~(s ~ - ~ ) [  *+~+~] 2 exp i 2 

(2.9b) 
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Using this and Eq. (2.3) we can express the first part of the integral (gain 
term) in (2.1) as follows (introducing ~ = - - ~ - a  as a new integration 
variable): 

1 (ik)'+"Zc~ t"'[ ~ + ~ 1" : e x p ( - ~  k2)12~d~P ~(cos + ) ~ ]  n,n',m,m' ) t c O S - - ' - ~ )  

• exp[ i(m + m')a + i( m + 2 m' )~ + ira( ~ )]Cnm(t)Cn,m,(t) 

(2.1o) 

which can be written in the following form: 

N 
= exp/-k _.k2'~l ~~176 ~ '  exp(iMa)(ik)NGNM (2.11a) G . T .  

2 ]N=OM=--N 
with 

N ml 
GNM = E '    'Com(t)CN-~ (0 

.=0m=mo (2.11b) 
m 0 = m a x ( -  n, M - N + n), m 1 = min(n, M + N - n) 

The real-valued coefficients S uM are nonzero only when both n + m and 
N + M are even, in which case they are given by 

(2.11c) 

By equating coefficients of kNe iM~ after substituting (2.3) and (2.11) into 
(2.1) we derive the moment equations: 

N ml 
CuM(t) + I~Cug(t) = ~ ~ '  #~MC, m(t)CN_m,g_m(t ) (2.12) 

n=0m=m0 
In case the integral for ~NM diverges--as for actual Maxwell molecules-- 

this equation is still valid if we subtract the divergent contributions on both 
sides (they are equal). This would have followed if we would have taken 
together the gain term and the loss term from the very beginning. 

About the system of moment equations we note the following: for 
a given model, defined by a collision rate o(cos ~) the quantities/~NM can 
be calculated. For a given initial distribution the non-isotropic Laguerre 
moments at initial time can be found from (2.4). Since the equation with 
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CNM(I) contains CNM(t) linearly and further only moments with lower N 
values, the system can be solved recursively with respect to N. Every 
moment consists of a finite (though with N rapidly increasing) number of 
transients, i.e., terms exponentially decreasing with time. 

Numerically the velocity distribution function must be approximated 
by a finite number of terms in (2.8). In this sense (2.12) together with (2.8) 
constitutes the solution of the nonlinear Boltzmann equation for Maxwell 
models. 

For isotropic initial conditions the solution reduces to the Laguerre 
series solution as first discovered by Ernst. (2'1) For that case the equations 
[in terms of the dnm(t), see (2.8b)] for the only nonzero moments take the 
form 

N 

d2N, o(t ) + t~o, od2u, o(t) = ~ I~N, Kd2K, o(t)d2(N_K),o(t) (2.13a) 
K = 0  

with 

2N,O_=(N]C2~(COS@)[sin~ ]2K[ ~ ]2(N-K, 
c o s  

The quantities /~N, K are given by Ernst (1) for a number of models (e.g., for 
the well-known Tjon-Wu model I~W,K = (N + 1)-1). We note that the 
nonisotropic coefficients IxNff can be expressed in terms of the isotropic 
ones, as follows from (2.11c) and (2.13b): 

- 1  
N+IMI IMI 

~nm ~--" ~(N+tMI) /2 , (n  + k) /2  
k=0 n + k  

2 

(2.14) 

where the sum is over values of k for which n + k is even and sgn(M) is 
- 1 when M is negative and + 1 when M is positive or zero. 

The solution to the moment equations (2.12) is given recursively by 

CNM(t) = exp(--~Ngt)[ CNM(O) + fotd'cexp(~NM'r) 

N-- 2 rnl 1 N M  
]s Cnm('l')CN-n,M-m('I") ( 2 . 1 5 )  

n = 2  m=mo 
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where hNM are the eigenvalues of the linearized Boltzmann equation 

XNM=fo2~d~(COS~/){1--[COSN(~)+sinN(~)]e ~M~/2 } (2.16) 

The conservation laws (1.6) are translated into 

Coo(t) = 1 (2.17) 

Clm(t ) = 0, m = _ 1 

consistent with (2.12). We note that the normalized value of Coo(t ) has been 
assumed in the derivation of (2.12); solving (2.12) with a different value of 
C0o(0), as was done in Ref. 18, is inconsistent with the starting equation 
(1.1). 

To demonstrate the usefulness of the still formal solution (2.15) one 
has to show that the corresponding series (2.8) converges and that the sum 
satisfies the Boltzmann equation. In the case of isotropic initial conditions a 
very elegant theorem to this effect has been given by Bobylev, (17) which has 
a very simple proof and the advantage that it is valid for all Maxwell 
models (including Maxwell molecules). For our two-dimensional non- 
isotropic case a similar theorem can be given. Its proof makes use of the 
fact that the number 

N-2 N/2)  
C ' = m a x  l ~--2( N,M n/2 I " MI (2.18) 

N~>4 

is finite (see Appendix B). The theorem can be formulated as follows: given 
any set of positive numbers O N subject to the condition OKON_ K <<. O N and a 
real number a > 1, the set of numbers ONM defined by 

ONM = C,C=(IMI + 1)~F(N/2 + 1) (2.19) 

with 

C 2 = 2  ~ ( I m l + l )  -~ 

can serve as uniform upperbounds of the moments, i.e., if ]CNM(O)I < ONM 
then ICNM(t)I < ONM. The proof, carried out by induction, is given in 
Appendix B. There we also show that for 0 n =pn ,  0 < p  < 1/2 the series 
(2.8a) converges in the mean to a function inside the above mentioned 
Hilbert space and also that the convergence is uniform in v and t and the 
sum is a solution to the Boltmann equation. 
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3. SOLUTION TO THE THREE-DIMENSIONAL MODEL 

For three-dimensional Maxwell models the Fourier-transformed 
Boltzmann equation has the form 

a~(k, 0 ^ A A 
- f d ~ ( k .  ~ ~ ^ " n)(d)[~k(k + n),t]d)[ �89 ~(k, t)} at 

(3.1) 
where in polar coordinates the occurring vectors are now given by 

k = k(cosa sin/?, sina sin fi, cos/?) 
(3.2) 

= (cos q~ sin 0, sin ~ sin 0, cos 0 ) 

Assuming the existence of the moments of f(v, t) we expand the characteris- 
tic function--analogous to what we did in Eq. (2.3)--in terms of an 
appropriate set of functions: 

oo n l 

q)(k, t) = (4~r)~/2exp(- !k2~2 /~--0X' ~= m~= -,C"tm(t)(ik)nYzm(fi'~ (3.3) 

In Appendix A the relation between the coefficients C, lm(t ) and the 
velocity distribution function is derived. These coefficients vanish unless 
n + l is even (we put the prime as a reminder of this fact). The Ylm(fi ,  a)---- 
also denoted as Ytm(k ) - -a re  the well-known spherical harmonic func- 
tions.(S) 

The C,t m (t)  are again generalized moments of the velocity distribution 
function (see Appendix A): 

(--)(n-l)/22-(n+l+2)/2r 
Cnlm(t) = F[(n + l +  3) /2]  (E~m(V)) (3.4) 

where the complete set of basis functions E, l  m (v) is defined by 
1 / 2  l ( l + 1 / 2  1 2 A Enlm(V ) ~- (4~r) v s )Ylm(V) 

(3.5) 
n + / e v e n ,  0 < n < ~ ,  0 < l < n ,  - l < m < l  

These functions (Bunnett functions (15)) are eigenfunctions of the three- 
dimensional quantum mechanical oscillator problem (treated in spherical 
coordinates). They have the orthogonality property 

exp ( -  �89 v 2) 
f dv ( 2 , / 7 ) 3 / 2  Efflm(u165 ) 

= 2'+l~r-l/2F[(n + l +  3) /2]  6~,'6H'Smm ' (3.6) 
[ ( , -  
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From this and (3.4) it follows that the velocity distribution function can be 
expressed in terms of them [alternatively this can be derived by Fourier 
inverting (3.3) term by term] 

e x p ( -  �89 v 2) 
f ( v , O  - (2 . )3 /2  

with 

n l 
~ '  ~ dnlm (t)E, zm (v) (3.7) 

n = 0  l=0  m= --1 

4,m( O = ( -~J  )~ (-- 2)("--')/:Cn,,.( O (3.8) 

Now we derive the set of equations for these (nonisotropic Laguerre) 
moments. Using (3.3) we express the gain term (G.T.) in terms of the 
Cnlm(t ). To this end we define angles 0+ and 4,_+ such that 

�89 = k[�89 ___/~.~)]1/2(cos4,_+ sin 0 _+ , sin 4, _+ sin0_+, cos0+)  (3.9) 

Now the gain term may be written as 

A . 1 (1 + ~ ' ~ ) ] n / 2  G . T . =  ( 4 , n ' ) e x p ( - l k  9) ~ fdfz~(k.~)[-~ 
3 

g///P/,H ~ 

X 1 ( 1  --  ~ "/~) (ik)n+n'ylm(O+,4,+)Yl,m,(O_,4,_)Cn/m(t)Cn,l,m,(t). 

(3.10) 

We choose a new, rotated coordinate frame in ~space,  such that the z' axis 
is directed along/~. In the plane orthogonal to k the x' axis m a y  be chosen 
arbitrarily. Let 0'_+ and 4,'_+ be the polar angles corresponding to k _ ~ in the 
new frame. The Ylm in the old frame can be expressed in terms of the new 
ones as (8) 

l 
Ylm(O+-'4,+-) = Z r'h(I)*['v t~)rlm'(O'+-'4,% "ram" ~,  _) (3.11) 

m ' =  - - /  

The quantities D (t) are matrix elements corresponding to an/-dimensional mm' 
representation of the rotation that maps the z axis onto/~. We denote the 
polar angles in the new frame corresponding to ~ by 0' and 4,'. The 
Jacobian of the transformation of variables is of course equal to unity. 
Since the z' axis is along/~ the following relations are valid: 

/~. ~ = cos 0' 
Y 1 / 0 t - -  0+ = : 0 ,  = �89 - o 3  (3.12) 

4,+ = O' 4, '  = 4,' + ~r 

In the following we drop all primes (the new coordinate frame is 
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understood throughout). The gain term can now be written as 

ntmp 
n' l 'm'p '  

x D2~>*(~, B)D,<.;'~>,*(~, B )c,,,m (Oc.,,.,.,(O (3.13) 
The only /~ dependence in this formula is through the matrix elements 
D(O(a /~), outside the integral sign. The ~ integration can be done mm'\  

straightforwardly, the ~ dependence of y:?(0,~) being through a simple 
factor eiP~': 

0 

= (27r)Sp+?,. o Y,I?,( O , 0) Y,,,:,.I( -K~--~ , 0) (3.14) 

where we used Y:m(O, O) = (-)"Y~.-m(0, 0) in the second equality. Because 
of the Kronecker delta in (3.14) we must havep = - p '  in (3.13). Then we 
can use the well-known Clebsch-Gordan series (8) to rewrite the product of 
matrix elements: 

l + l '  

2 
L=ll-rl 

(ll 'mm'l ll'L,m + m')(ll'p, --pl ll'LO)D(mL+~,,,,,O(a, ~ ) 

~+" ( 4~ )~/2 ~_~ (ll'mm' I ll'L, m + m')(ll'p, - P l  ll'LO) 2L + 1 
t= l t - r l  

x Y~,m+m'(B,~) (3.15) 

The definition of the Clebsch-Gordan coefficients used here can be found 
in Ref. 8. Explicit expressions and a scheme for evaluating them numeri- 
cally fast are given by Rose. (a) Now the gain term takes the form 

L 

G.T.=(4~r) l /2exp(- �89  ~ ~ '  ~] GNI.M(ik)NyLM(B,a) (3.16a) 
N = O  L = O  M = -  L 
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with 

GNLM -- 
n n N E t N-- ml po 

8~2 E E ~ E (ll 'm,M-- mIl l 'LM) 
(2L  + 1) 1/2 n=0 z=0 z'=o m=mo p= -po 

• <zz'p, -plH'LO) 
n 0 ) N - n   ;?cos0[  cos0 (oosO) 

y 0 
X l[p[(-~,O) Y l , l p , ( - ~ , O ) l f n l m ( t ) f N _ n , l , M _ r a ( t  ) 

(3.16b) 

with m 0 -- max(  - l, M - l ') ,  m 1 = min(/ ,  M + l ' )  and  P0 = min(l, / ,) .3 The  
m o m e n t  equat ions can  now be writ ten as 

n N E t N ~ t n  ml 000 N L M ..'~ 
CNLM (t) "q- ~O000CNLM (t) = E E ~nll'm l"~nlrn (t)CN_n,I,,M_ m (t) 

n = 0 / = 0  / ' = 0  m=mo 

(3.17a) 

W e  remind  the reader  that  there are only terms for  which both  l + n and  
l '  + N - n are even (this is indicated by  the two primes).  There  is however,  
ano ther  restriction on l and  l ' ,  namely ,  l1 - l'[ < L < l + I '  as follows f rom 
(3.15). Outside this region in the (l, l ' )  p lane  we define NLM ~nll' m -m- O. 

Like in the two-dimensional  case, if N/~M NLM /X0OL0 and IZNLOm diverge (as is the 
case for  Maxwel l  molecules)  their contr ibut ions have  to be  subt rac ted  on 
bo th  sides and  a finite par t  remains.  This would have  been the result if we 
would have  taken  together  gain and  loss terms f rom the very beginning. 

The  coefficients NLM /~tt'm are given by  
min(l ,  l ' )  

NLM_ 8~ 2 ( l l ' m , M -  mIll'LM ) ~ (ll 'p,-pIll 'LO) 
/~nu,,~ (2L  + 1) 1/2 p=-min(l,l') 

n 0 )N--n 

O , O)Yz,lpI( E~--~ , O ) (3.17b) x Ytlpl( g 

The  appea rance  of the C l e b s c h - G o r d a n  coefficient outside the summat ion  

3 Fo r  N + L odd,  GNLm vanishes .  Th is  follows f rom the fact  tha t  bo th  n + 1 and  N - n + l '  
have  to be  even and  the s y m m e t r y  proper ty :  

(ll'p, - p [  ll'LO) = (-)l+V+l~(ll '  - p, p[ ll'LO) (see Ref. 8) 
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is related to the invariance of the nonlinear Boltzmann equation under 
rotations. 

Using the explicit form of Ytp(O/2,0) in terms of sin(0/2) and 
cos(0/2)  it is possible to express the coefficients NLM I.tnll,m in terms of the 
isotropic ones (i.e., the ones having L = M = I = l' = m = 0). We find 

min(l, 1') 
N L M _  27r ( l l 'm,M- mIll'LM)2 -(z+l') ~,, 

/~.zr,~ (2L + 1) 1/2 p=-min(t,z') 

X(ll'p'-p]ll'LO)I(2I+l)(2l'+l)(l-[P[)!(l'-IP[)!]l/2(I-+ ]p[)! ( l '  + Ipl)! 

l l ' • ~ '  ~ '  (-)q-k+r-k')/2(l+k)!(l'+k') ! 
k=jpn k'=npu [(k + k)/2]! 

• 

• 

[ ( l '  - k ' ) / 2 ] !  (k  - [p[)! (k'  - IPl)! 

N + k + + ]-~ 
~( N + k +k') /2,(n+ k) /2 (3.18a) 

The sums over k and k' contain only terms for which k + ! and k' + l '  are 
even. The coefficients #n,k defined as 

n ~ ~2k[ . 0 ,~2(n-k) 
#n,k=(2~r)(k)fo 0 d(cosO)-6(cosO)(cos 0 ) ( s l n - ~ )  

 n00 
= ~2k,000 

have been calculated for a number of models (l) in explicit form. 
As in the two-dimensional case the moment equations are recursively 

soluble for given initial conditions CWLM(0), that have to be determined 
from (3.4). At a later time the velocity distribution function is then given by 
(3.7). 

We note that the eigenfunctions and eigenvalues of the corresponding 
equation, which are long known, can be derived from the above results in a 
simple way. In the three-dimensional case we simply substitute CNLM(t) 
= C N L M ( ~ )  "~ bNLM(t  ) with CNLM((~)  ~-- 8NO~LOSMO into the moment equa- 
tions (3.17a) and neglect terms quadratic in the buLM(t ). In that approxima- 
tion the bNLM(t ) decay exponentially [~exp(--)~NLt)] and the eigenvalue 
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occurring in the exponent is given by 

X~L = ~ ' ~ o (  1 + ~N o) - ~ ~/~M ~ / ~ /  , (~OOLO -t" ~L]vLO M ) 

-- (27r) fo~dCosO-o(cosO ) l + Su, o-- (sin-~ ) PL(sin 0 ) 

o )  4os l ) 
a well-known result. The eigenfunctions are given by (3.5). 

We note that the five lowest eigenvalues X00, )tlm and X2o are all zero. 
As a consequence of this the quantities Cooo(t), C11M(t ) and C2oo(t) are 
conserved, as follows from (3.17). [Note that if we would not had implicitly 
normalized Cooo(t) to unity already in (3.1), the term with CNLM(t ) on the 
left-hand side would have been multiplied by C000(t). ] 

The nonisotropic eigenvalues (with L r 0) can be expressed in terms of 
the isotropic ones (with L = 0) as 

L 

)tNL = ~., ak, L)tN + k, o (3.20) 
k=O 

where ak, t is the coefficient of x k in PL(X). 

Table I. 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

N / L  

Eigenvalues in the Three-Dimensional Isotropic Scattering Model 

, ~ 7 ~- * * g 

1 3 15 
�9 * 4 * 

�89 . ~ . 48, , 

�9 ~ �9 ~ �9 ,~ �9 

7 17 61 
�9 1~ * Y6 * 

, 2 I I 29 
5 * 7~ * ~ * 

2 181 

0 1 2 3 4 5 6 

127 * 

ls7 
19~ * 

757 * 

7 8 

25, I ~gg 

, 511 
512 

9 1 0  
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This follows directly from (3.19). For the (Krook-Wu) isotropic scat- 
tering model [where XN,0 = (N - 2)/(N + 2)] we used this to calculate the 
first few eigenvalues (see Table I). Note that XNL increases with increasing 
L and fixed N and also with increasing N and fixed L. 

Like in the two-dimensional case it can be proved that for a class of 
initial conditions the series (3.7) converges both uniformly in v and t and in 
the mean (see Appendix C) to a solution of the Boltzmann equation. 

Now the answer can be given to the interesting equation: which is the 
lowest linear mode decaying faster than (or as fast as) the slowest term due 
to nonlinearity in the solution of the full equation. In the isotropic scatter- 
ing model this is the mode with N = 9, L = 1. The linear N = 9 mode 
decays as exp(-X91t)= exp( -~  t), whereas the equation for c800 contains 

400 2 the (nonlinear) term/z0000c40 o, which induces a term in its solution propor- 
tional to exp(-  2)tn0t ) = exp( - ~ t). This is the slowest nonlinear contribu- 
tion to any moment. For more general cross sections one finds that when 
using the solution of the linear equation to describe the approach to 
equilibrium one should leave out all the modes with eigenvalues higher 
than twice the lowest, since beyond this one the linear modes decay faster 
than the slowest term due to nonlinearity, in the solution to the full 
equation. This has been noted before by Kac. (14) 

4. ORDINARY MOMENTS AND POLYNOMIAL MOMENTS 

We have discussed the nonlinear Boltzmann equation for Maxwell 
models in terms of the nonisotropic Laguerre moments, using spherical 
coordinates. These moments proved to be very useful if the aim is retrieving 
the velocity distribution function at a later time given its value at initial 
time (in the spatially homogeneous case). The moment equations turned 
out to be recursively soluble and the velocity distribution function could be 
directly expressed in terms of these moments and the corresponding basis 
functions. 

In the spatially inhomogeneous case the procedure does not go 
through any longer, since the moment equations couple in the wrong 
direction. For that case the ordinary moments are more important, since 
they yield the hydrodynamic equations. These equations have been derived 
long before. (4~ Closely related to these ordinary moments are certain 
(Hermite) polynomial moments, being linear combinations of the former 
and satisfying the same equations (as we shall show below). Knowledge of 
them would also permit retrieval of the distribution function. 

The equations for the ordinary moments can be derived within the 
Fourier transform method. Since the equations themselves are already 
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known we merely sketch the method. The ordinary Taylor expansion of 
e ~k'v induces an expansion of the characteristic function: 

�9 (k,t)= (e ik'*) = ~ ( v ~  ~) 
nln2n3 

(ikl)"'(ikz)n2(ik3) "3 

nl ! n2! n3! 

v = (v l ,  k = ( k l ,  Gk ) 

(4.1) 

nl n2 n3 The coefficients (v  1 v 2 v 3 ) =  M,~,~n3(t ) are ordinary moments of the 
velocity distribution function. What  one has to do is substitute this expres- 
sion into (3.1) and work out the integral over ~. The calculations are 
laborious--at  least in three dimensions--but the procedure turns out to be 
possible. For  its result we refer to Ref. 4 (note that in this reference tensor 
moments are used, with a slighly different definition). 

The characteristic function can be expanded in still a different manner 
in terms of polynomial moments, using the fact that the generating function 
of Hermite polynomials is the exponential function: 

�9 (k,t) = <e ikv)  = e -('/2)k2 ~ (nem,(vl)nem2(v2)nem3(V3)) 
mlm2m3 

(ikl)n'(ik2)nz(ik3) n3 
X (4.2) 

nil n2! n3! 

The polynomials H G ( x  ) are defined in Ref. 9. The c o e f f i c i e n t s  (Hem,(Vl) 
Hem2(v2)Hem3(V3) ) ~ Hm~m2m3(t) are the so-called Hermite moments. The 
equations for the first few closely related tensor Hermite moments have 
been derived by Grad. O) 

Here we note a relation between the ordinary moments and the 
Hermite moments. It follows from (3.1) that for every solution ~(k, t )  the 
function exP(�89 t) is also a solution (though not satisfying the same 
boundary conditions). Comparing (4.2) and (4.1) we see that the Taylor 
series of exp(�89 k2)~(k, t) follows from that of ~(k, t) itself if we replace the 

ordinary m o m e n t s  Mn,n2n3(t) by the Hermite moments Hn,n2n3(t). Therefore 
both systems of moments satisfy exactly the same set of equations (but with 
different boundary conditions). This relation was noted before by Ernst (1'2) 
in the isotropic case. 

The equations for the above moments are also recursively soluble in 
the spatially homogeneous case. However, this is more difficult than before 
with the nonisotropic Laguerre moments, since now the equation with 
l~nln2n3(t ) contains all m o m e n t s  Mn,ln,2n,3(t ) with n' 1 + n~ + n~ < n I + n 2 -4- n 3 . 

This means that at every step an extra linear transformation has to be 
performed. 
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5. D I S C U S S I O N  

In this paper  we have mainly discussed the nonlinear Boltzmann 
equation for Maxwell models using spherical coordinates and the corre- 
sponding (generalized) moments.  It  turns out that in the spatially homoge- 
neous case these moments  are the suitable ones if one wants to construct 
the velocity distribution function at all times, given it at initial time. 

The moments  can be found from a recursively soluble set of equations 
and the distribution function can be expressed in terms of them. This result 
is an extension of that for isotropic initial conditions, first derived by 
Ernst. (2) It  is valid within the Hilbert space of functions for which 
flf[EeO/2)V~dv is finite. 4 

The moment  equations derived here are as explicit as possible. All the 
coefficients have been determined in terms of integrals over the cross 
section. Like in Ref. 2 the method of the present paper  makes use of 
Fourier transformation. This makes the calculations much easier than with 
any of the older methods, where all manipulations had to be done on the 
collision integral in the velocity representation. The method also allows one 
to construct the equations for the ordinary moments - - re levant  to the 
hydrodynamics - -and  those for the (Hermite) polynomial moments.  The 
former have been derived by Ikenberry and Truesdell O) in explicit form, 
the latter have been considered by Grad,  O) who explicitly constructed the 
first few of them. Unlike here, these authors use tensorial moments  with 
multi--indices, the number  of indices increasing with the order of the 
moments.  Here we note that the two types of moments,  as defined here, 
satisfy an identical set of equations, though with different initial conditions 
of course. This was shown before for isoptropic initial conditions. ~2) 

Closest to our three-dimensional result is that of K u m a r  ~15) (see 
Introduction). This author compares the use of the different basis functions 
and he arrives at the conclusion that the Burnett functions (3.5) are the 
most economical ones. 

The practical importance of the result is somewhat limited. Firstly it 
applies to Maxwell models only and it seems impossible to extend it to 
other types of models (as an exact solution). Secondly, in actual (numerical) 
calculations the solution can only be used at not too high values of the 
energy, where not too many  terms in the series are needed. 5 However, in 
the isotropic case features like the overshoot phenomenon (discovered by 

4 A modification of the result (see Ref. 10) yields the general solution in the (greater) space of 
(positive) functions for which lim~_, ~ f(v)v k = 0 (for every k). Special solutions even outside 
this larger space have been found too. (6'7) 

5 The numerical convergence of the series may be improved by using generalized Pad~ 
resummation, O3) the modified Laguerre series, (1) or both. 
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Tjon, (ll) who numerically integrated the nonlinear Boltzmann equation) 
could be reproduced using the series solution. (1'12) 
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APPENDIX A. DERIVATION OF THE EXPANSIONS OF THE 
CHARACTERISTIC FUNCTION 

First we quote some necessary standard formulas of mathematical 
analysis(8,9) : 

exp(ix cos y) = ~ ilmlJiml(X)exp(imy ) (A1) 
m= --~ 

l 
exp(ik.v)=(4~r)~']  ~ i~t(kr) Ylm(l~)Y~m(~) (A2) l=Om=-I 

xl/2 
j t ( z ) = ( ~ z  ) J,+l/z(Z) (13) 

O0 

Jl,,,l[2(xz)'/2] = (xz)O/2)lmlexp( - z)~=o e~lml)(x)z" 
F(--~ ~ T- ~ 7r 1) (A4) 

In here, Jlml(X) is the ordinary Bessel function andjl(z ) the spherical Bessel 
function. In (A2), k and v are three-dimensional vectors. The s are 
generalized Laguerre polynomials. 

The expansion of the characteristic function is derived as follows: in 
the two-dimensional case we use (A1) together with (A4) to expand 
exp(ik �9 v): 

exp(ik �9 v) = exp[ ikvcos(d~ - a)] 

= e x p ( l k 2 )  ~ ~,nilmlexp[im(~P-~ kn(�89 
n=0 m = -  (n + Iml/2)! 

X ~ (Iml) [ 1 v2~v m (A5) 

Averaging this with respect to the velocity distribution function yields (2.3) 
and (2.4). In the derivation it becomes clear that only powers k" occur for 
which n + m is even. This is indicated by the prime. 
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In the three-dimensional case we combine (A2), (A3), and (A4) into a 
single formula: 

oo n l l)/22(2-l-n)/2 
e x p ( i k ' v )  = '/r3/2exp( - l k 2 ) ~ a  l~=Om~a (ik)n(-)(n- 

/ n = 0  = = - - '  FI(n+l+3)/2] 
* * * ( l +  1 2 X Ylm(k)Y~m(V)~(n_l[~)2~2( ~/)2)V' (16) 

The prime now indicates that l + n has to be even. Averaging with respect 
to the three-dimensional velocity distribution function yields (3.3) and (3.4). 

APPENDIX B. CONVERGENCE OF THE SERIES 
(TWO-DIMENSIONAL CASE) 

B.1. Derivation of an Auxiliary Inequality 

We first prove the crucial property C 1 < oo, where 

M I (B1) 
N,M ~NM n = 2  
N ~ > 4  

and then proceed to the actual proof of the theorem of Section 2. We use 
the abbreviations: ~ = ~(cosff), s ~ sin(~/2),  c ~ cos(~/2),  and 

f 2  = ~- (c "~N-" + ~ "cN-~) 
n 
g 

Note from (2.11c) and (2.16) 

N N-2 
1 

n ~ n=2 XNM n= 2 

with ~N = 2 f ~ ( 1  - c N - sN)d~. We have to show that the right-hand side 
of this remains finite in the limit N ~  ~ .  For  odd values of n we have 
f f f  < f~U+l + fff-1 except at a local maximum of f f f  as a function of n (there 
are two such maxima). Hence we have 

N - - 2  N - - 2  

f f  <<. 3 ~ f ~  + 2max f f f  (B3) 
n = 2  n = 2  n 

n even  
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Using, e.g., the method of steepest descent one shows that the last term 
does not contribute to the sum in the limit N ~ m  (i.e., limu_+~fd~p~ 
[max,<ufUl = 0). 

We distinguish between even and odd values of N. For even N we use 
the binomial theorem: 

N - 2  
3 ~] f U =  3(1 -- S N -  oN). (B4) 

n=2  
(n even) 
(N even) 

For odd N we use the fact that 

N 

2 < A  
n n 
g g 

for 2 < n < ( N -  1)/2 (where A is a constant) and the binomial theorem 
again: 

N - 2  (1/2)(N-  1) (1/2)(N- 1) 

3 ~ f u = 6  ~ f~<<.6A 
n=2  n=2  n=2  

(n even) (n even) (n even) 
(N odd) (N odd) (N odd) 

n (cns N-n "t- snc N-n)  

< 6A(s  + c)(1 - c u - '  - s N- l )  < 12A(1 - c N -  s N) (B5) 

So for both even and odd N values we have 

N--2 
2 fo~dtp 2 fff  < const fo~(1_ c N - sN)Od# 
)kN n=2  

= const (B6) 

This proves the desired property C 1 < m, needed in the proof of the next 
section. 

B.2. Proof of the Theorem of Section 2 

ICNM (0)1 < O u m ~  ICum (t)l < ONM (B7) 

We choose CNM(O ) satisfying the requirement I CuM(0)I < 0uM. For N < 3 
the above property trivially holds, since the lower moments decay with a 
single exponential. If we assume it to hold for all n, m with n < N we can 
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show that it also holds for n = N by the following string of inequalities: 

1 - exp(--)tuMt ) U-2 I~,0 [O~mON-",M--m 
ICuM(t)l <. ONMexp(--)tNMt) + ]rUM ~. I ~M 

n = 2  

< exp(--)tNMt)ONM + [1 -- exp(--XNMt)]ONM 

t N-2 x 1 
n=2 

• -U2,.=-oo (Iml 

F/ 

[ M [ + I  J~} 
+ 1)( IM- ml + 1) 

< ONM (B8) 

where we used the induction assumption [applied to (2.15)] in the first 
inequality and the form of the 0,m in the second one (together with the 
property 0k0,_ k ~< On). The expressions between curly brackets are both 
bounded by unity [see (2.18) and (2.19)]. Hence by induction our theorem 
is valid. 

B.3. Convergence of the Series Expansion 

B.3.1. Convergence in the Mean 

For convergence in the mean of the series (2.8) it is required that the 
norm (squared): 

n ~ O  rn= --n 2 

remains finite for all times. If we replace ICnm(t)l by its upperbound Ohm 

and choose On = p",  0 < p < �89 in (2.19) it is not difficult to show this, using: 

< n < 2" (B10) 
r ( . / 2  + 1) ~ g 

B.3.2. Uniform Convergence 

To prove uniform convergence of the series (2.8) in v and t we have to 
show that the tail of this summation 

TN(V't)--e-(1/2)~2 k Z ~ r  ~ '  (-2)(~-Iml)/2 
n = N r n = - n  

 t'vme  ~ t l';2 e'm  (Bll) 
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is uniformly bounded as N ~  ~ ,  i.e., l imN~{SUPv [ TN(V , t)[ } = 0. To this 
end we replace Cn,n(t ) by their bounds 0nm, and the same is done with the 
Laguerre polynomials, using (9) 

eO. ) rx'l [(n + I ) / 2 ] !  
(n--/)/2~ ]1 • [ ( n -  l)/2]!l! ex/2 (B12) 

With x = (1/2)v 2 we find 

k n ITu(v,t)l <<. e-X~2 2n/20n 2 '  [ (m + n ) / 2 ] t  xm/2 (BIB) 
~r n=N F [ ( n / 2 )  + 1] m=0 m! 

We extend the m summation to infinity and write [(m + n)/2]! as an 
integral: 

oo 
~_~, [ ( m + n ) / 2 ] ! x m / 2 e _ X / 2  
m=0 m! 

oo 
= 2 '  l s m=0 ~ "  e-Yy(m+n)/2xm/2e-x/2 

< s e-Yy~/ae(xy)l/~-~/2 < s  dy e-~/2y~/2 

n 1) (B14) = 2n/2+ l r (  + 

We have eliminated the x dependence by replacing the integrand by its 
maximum with respect to x. Thus we have found 

iT~(v,t) I < 2 ~ 2 % =  CN (B15) 
n~N 

For 0 n = p ~  with 0 < p  < 1/2 we have limN_~C N = 0  and the original 
series converges uniformly in v and t. A slight modification of the deriva- 
tion yields that if we choose 0 n = (�89 - 3 )  ", 0 < 3 <�89 a positive number e 
can be found such that [TN(V, t)l is bounded by CN e-~. This is enough to 
justify all interchanges of limits needed to show that the sum of the series 
indeed solves the Boltzmann equation. 

APPENDIX C: CONVERGENCE OF THE SERIES 
(THREE-DIMENSIONAL CASE) 

The proof of the convergence of the series solution (3.7) for all 
t imes--for a class of initial distributions--is analogous to that for the 
two-dimensional case. We give only an outline of it. Again a crucial 
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property is needed: 

C, = max v---1 ~ 2  
NLM ~'NL n=2 
ll' m 

N 
2- 2 L +  I 
n (2l + 1)(2l' + 1) 

NLM (C1) I I< O0 

and 

implying 

I( l l 'm M - ml l l ' L M  )[ < t 

~l(ll'p-plll'LO)l< m i n i ( 2 / +  1)1/2,(2/' + 1) '/2] (C4) 
P 

For the spherical harmonics we use an upper bound (that follows from the 
addition theorem in a special point): 

(c5) 

With all these bounds we find from (3.17b) 

N 
"2 NLM 

l,s m 
n 

w i t h  ~N/2,n/2 as defined in (3.18b). The triangle inequality I I - l ' [  < L 
< l + l' implies 

2 ~/2 m i n i ( 2 / +  1) ' /2 ,(2l '+ 1)'/2] 4 ( 2 L + 1 )  (C7) 
(2l + 1)'/2(2l ' + 1) ./2 

Combining (C6) and (C7) the proof of the desired property (C1) is reduced 
to proving: 

N - 2  

max 1 (C8) 
N,L ~NL E I~N/2,n/2 < O0 

n = 2  

which can be done in exactly the same way as in the two-dimensional case 

(2l + 1)(2l'-t- 1) 71/2 
< 2 L + l  J min[ (21+l ) ' / 2 , (21 '+ l ) l /2 ] l~U/2 , , / 2  (C6) 

(C3) 

with NLM ~nll'm as in (3.17b) and ~kNL in (3.19). The proof of this makes use of 
the orthonormality property of the Clebsch-Gordan coefficients: 

[(l l 'm M - m [ l l 'LM )12= 1 (C2) 
m 
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(see Appendix B). We define a set of numbers 0nt m by 

0n 
O,,lm = C1C2C3( 2l + 1).+1(ira I + 1)r + 1) (C9) 

with OkOn_ k < 0 n, a > 2, fl > 1, C 1 as defined by (C1), C 2 as defined by 
(2.19), and C3 defined as 

C3 = rnLax ~ ,  [ 2 L + l  ]~ (CIO) 
tl' ( 2 / +  1)(2/ '+  1) 

where the sum is over all values of l and l '  compatible with the triangle 
inequality, and for which l + I' + L is even (for a > 2 we have C 3 < oe). 
The following theorem can now be proved exactly as in the two- 
dimensional case: 

ICNLM(O)I < ONLM~ICNLM(t)I < ONLM (C l l )  

and from this the uniform convergence and convergence in the mean of the 
series solution (3.7) for the class of initial conditions with 0 n = p n  (p 
< ~r-2/3). Here our aim was to prove that a nontrivial class of initial 
conditions exists, for which the series solution makes sense. We have used 
rather rough bounds and do not doubt they can be refined, allowing a 
bigger class of initial conditions. Also exponential bounds of the type 
considered by Bobylev (17) [[CNLM(t)I < ONLMeXp(--SNLMt)] can be con- 
structed easily. 
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